London, 17 December, 1997
CPMP/EWP/281/96

COMMITTEE FOR PROPRIETARY MEDICINAL PRODUCTS (CPMP)

NOTE FOR GUIDANCE ON
CLINICAL INVESTIGATION OF DRUGS USED
IN WEIGHT CONTROL

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCUSSION IN THE EFFICACY WORKING PARTY (EWP)</td>
<td>October 1996</td>
</tr>
<tr>
<td></td>
<td>February 1997</td>
</tr>
<tr>
<td>TRANSMISSION TO THE CPMP</td>
<td>March 1997</td>
</tr>
<tr>
<td>TRANSMISSION TO INTERESTED PARTIES</td>
<td>March 1997</td>
</tr>
<tr>
<td>DEADLINE FOR COMMENTS</td>
<td>September 1997</td>
</tr>
<tr>
<td>RE-SUBMISSION TO THE EWP</td>
<td>December 1997</td>
</tr>
<tr>
<td>APPROVAL BY THE CPMP</td>
<td>December 1997</td>
</tr>
<tr>
<td>DATE FOR COMING INTO OPERATION</td>
<td>June 1998</td>
</tr>
</tbody>
</table>
The following notes are intended to provide guidance for the clinical evaluation of medicinal products used to promote weight loss in obese adult patients.

These Notes for Guidance should be read in conjunction with the Annex of Directive 75/318/EEC, as amended, and guidelines for conducting clinical trials, including those on:

- Biostatistical Methodology in Clinical Trials in Applications for Marketing Authorisations (The Rules Governing Medicinal Products in the European Community, Vol III, addendum 3)
- E1A: The Extent of Population Exposure to Assess Clinical Safety for Drugs Intended for Long Term Treatment in Non Life Threatening Conditions (ICH Guideline).
- E4: Dose Response Data to Support Drug Registration (ICH Guideline).

INTRODUCTION

Obesity is defined as a state of excess body fat frequently resulting in impairment of health and according to WHO may be expressed in adults in terms of the Body Mass Index (BMI: weight in kg/height in metres squared) with BMI of between 20 and 25 representing the normal range, a BMI of 25 to 30 representing overweight and a BMI of ≥ 30 considered to represent obesity. It is recognised as a chronic clinical condition which usually requires long term therapy to induce and maintain weight loss. Obesity is considered to be the result of complex interaction of genetic, metabolic, environmental and behavioural factors and is associated with increases in both morbidity and mortality.

Although the relationship is not linear, health risks increase with severity of obesity and include hypertension, insulin resistance and diabetes mellitus, and cardiovascular disease (angina pectoris, claudication, venous thromboses and their major consequences such as pulmonary embolism). The effect of obesity on cardiovascular morbidity and mortality is through association with hypertension, diabetes and hyperlipidaemia (In the Framingham study, for every 10 per cent rise in relative weight, systolic blood pressure rose 6.5 mmHg, fasting cholesterol 12mg/dl (0.3mmol/L) and fasting blood glucose by 2mg/dl (0.11mmol/L).

The sleep apnoea syndrome, strongly associated with obesity, has an increased mortality. There is also an increased mortality from endometrial carcinoma in women and colorectal carcinoma in men. Hypertriglyceridaemia, reduced levels of high density cholesterol, elevations of total and low density cholesterol and abnormalities in haemostasis are also associated. Mechanical complications can severely impair quality of life. Obese patients have a significantly impaired quality of life, as objectively measured by several independent tests.

The location of body fat is also a predictor of the relative health hazards of obesity. Several epidemiological studies have shown that the regional distribution of body fat is a
significant and independent risk factor for cardiovascular disease. Subjects with visceral (android/ abdominal) obesity represent a subgroup of obese individuals with the highest risk for cardiovascular disease and are also at greater risk of metabolic complications than patients with lower body (gynoid) obesity. Recently, waist circumference alone has been found to be an integrated measure of obesity associated with cut-off values of 80cm in women and 94cm in men. Different measurements have been used to define abdominal distribution of fat, including the ratio of circumference of waist to hip (waist to hip ratio WHR) or waist circumference alone.

Treatment of obesity should be clinically relevant, aiming for prolonged and maintained weight loss in order to decrease associated morbidity and mortality.

Non pharmacological options for treatment include nutritional education and modification (usually calorie restriction), behaviour modification, and increased exercise. In severe obesity, very low calorie diets (VLCD) and surgery may be used.

Pharmacological options are not usually recommended until at least a trial of an appropriate reducing diet has proved insufficient, i.e. inadequate initial weight loss was achieved or an initial weight loss could not be maintained by the individual despite continuing dietary advice. Pharmacological options are only considered as an adjunct to dietary measures.

Centrally acting anorectic agents currently used in the treatment of obesity fall into three pharmacological categories: those which act via catecholamine pathways, those which act via serotonin pathways and those acting via combination of the two pathways. Drugs acting through catecholamine pathways enhance catecholamine neurotransmission, and usually have some stimulant and sympathomimetic activity. Although associated with reduced subjective hunger ratings and reduced food intake, their stimulant or euphoriant effect has been associated with potential for abuse. Drugs acting through serotonin pathways increase its release and reduce its re-uptake, and although they have no stimulant or euphoriant effect, they too may have associated neurotoxicity. Cases of severe, often fatal, pulmonary artery hypertension have been reported in patients undergoing therapy with centrally acting anorectic agents. An epidemiological study has shown that anorectic intake is a risk factor involved in the development of pulmonary artery hypertension and that the use of such anorectics is strongly associated with an increased risk for this adverse drug reaction. It has been shown that the duration of treatment greater than 3 months and a BMI of greater than 30 kg/m2 increase the risk of developing pulmonary artery hypertension.

Drugs that inhibit the absorption of nutrients from the gastro-intestinal tract (and so promote weight loss without having a specific effect on appetite) are also under development.

Development of new drugs that have different mechanisms of action may require discussion and modification of some of the specific requirements laid down in these Notes for Guidance.

1. **SPECIFIC CONSIDERATIONS**

1.1 **Need for Placebo Controlled Trials**

Since weight control can sometimes be achieved by a reducing diet, exercise and behaviour modification alone, the use of a placebo group is necessary to show clearly that
the drug and appropriate non pharmacological treatments are more effective than the same non pharmacological treatment alone. However, the use of a placebo group in this condition (particularly in long term studies) is often associated with a high rate of drop outs. For this reason, an effective non pharmacological treatment is warranted to prevent dropouts. In addition, the number of drop outs (for lack of efficacy) from the placebo group compared to the treatment group can provide useful information about the efficacy of the study drug. As long term studies with effective drugs become available, it is recognised that alternative trial designs may become appropriate or acceptable.

2. **ASSESSMENT OF EFFICACY CRITERIA**

The main objective of promoting weight loss in obese patients is to reduce the risk factors associated with this condition which otherwise ultimately lead to increased morbidity and mortality.

2.1 **Primary Endpoints**

Epidemiological studies have identified weight as a risk factor for a number of diseases, and have also shown that an increase or decrease in weight is associated with a corresponding increase or decrease in other risk factors. Demonstration of weight loss is considered to be an appropriate surrogate measure of efficacy and hence a suitable primary endpoint. An associated reduction in cardiovascular risk factor(s) is an important secondary end point.

2.2 **Secondary (supportive) Efficacy Endpoints**

Choice of secondary efficacy variables should be justified by the applicant and could include variables such as quality of life parameters, biochemical parameters of lipid and glucose metabolism as well as blood pressure, cardiac function and sleep apnoea episodes.

3. **METHOD TO ASSESS EFFICACY**

3.1 **Measurement of Weight Loss**

The goal of treatment of obesity is to prevent associated morbidity and mortality. Although no studies have as yet confirmed an effect on mortality or morbidity, weight reduction has been associated with reduction in blood pressure, improvement in lipid profiles, and improved glycaemic control. Relevant decreases in certain risk factors associated with obesity have been seen with loss of at least 5 to 10 per cent of initial weight.

Demonstration of a significant degree of weight loss of at least 10 per cent of baseline weight which is also statistically greater than that associated with placebo is considered to be a valid primary efficacy criterion in clinical trials evaluating new anti-obesity drugs. Weight loss should be documented both as actual weight loss and by other appropriate measures (such as percentage body weight loss). Baseline weight may be used as a covariate in the analysis. A further illustration of the size of the treatment effect should be provided by looking at the proportions of responders in the various treatment arms - where response is more than 10% weight loss at the end of a 12 month period.

Results should be discussed both in terms of their statistical and clinical significance.
The difficulties of placebo controlled studies in obesity and the resulting high drop out rate should be considered in such discussions. It is important to follow up patients who have discontinued treatment to facilitate intention to treat analysis.

Measurements using accepted methods selected and justified by the applicant should demonstrate that weight loss is associated with appropriate loss of body fat (as distinct from muscle or body water). The demonstration of changes in visceral fat is particularly important in the context of hypertension, diabetes mellitus, and cardiovascular risk factors. Measurement of changes in body composition and in fat distribution can be useful to better define weight loss.

Items to consider in assessing and discussing efficacy include the distinction between weight loss and maintenance of weight loss. The rate of weight loss may be determined by various factors (initial weight or degree of obesity, ideal body weight, duration of obesity) and has often been observed to plateau after 5 to 6 months of continuous treatment with currently available treatments. An apparent reduction in drug effect may be associated with attainment of a more appropriate body weight or with a reduction in resting metabolic rate. The maintenance of weight loss or the prevention of weight regain, after the plateau in weight has been reached, could also be considered as an efficacy criterion.

3.2 Risk Factors

Cardiovascular risk factors associated with obesity (blood pressure, lipid profile, glucose homeostasis, fibrinogen) should be measured and monitored since weight reduction is usually associated with a rapid improvement of these parameters. Sleep apnoea episodes (and other disturbances of sleep wakefulness cycles), mechanical joint distress, infertility, psychosocial aspects (measured as quality of life) as well as other variables should also be considered. Improvement in one or more of these measurements can be considered as a secondary efficacy variable. Claims regarding drug efficacy relating to other risk factors should be demonstrated by a statistically greater improvement in those on drug compared to those treated with placebo, the additional improvement being clinically relevant.

3.3 Morbidity and Mortality

Effects on morbidity and mortality may be measured directly as efficacy variables but can only be properly evaluated in large clinical trials. Although there is no requirement to demonstrate a positive effect on these variables prior to licensing, demonstration of such effects will require such a study.

4. SELECTION OF PATIENTS

Patients entering these studies should have a degree of obesity which has been shown to be associated with a significant health risk and especially a risk of increased mortality. The study population will therefore depend on the degree of obesity and the presence of coexisting risk factors. Efficacy should be demonstrated in patients of both sexes.

Obesity in otherwise healthy adult patients should be diagnosed on the basis of a body mass index (BMI) of 30 or more in both males and females. Patients with associated or secondary effects of obesity (such as hypertension, hyperlipidaemia, diabetes mellitus, or cardiovascular disease), should be considered for such studies if BMI is greater than 27. Trials should be designed to take account of predictive risk factors of morbidity and mortality which include BMI, adipose tissue distribution (with an increased risk in the case of abdominal/android obesity), and association with other cardiovascular risk factors (such
as smoking, diabetes or hypertension) and episodes of sleep apnoea. Prospective stratification for some of these factors may be appropriate.

5. STRATEGY AND DESIGN OF CLINICAL TRIALS

Confirmatory phase III trials should be randomised, placebo controlled and double blinded. Additional studies using active controls can be performed if considered appropriate.

Patients enrolled in these trials should have been subjected to an appropriate weight reducing diet run in period for a specified minimum time and all patients should be given similar instructions, advice and encouragement with regard to diet and behaviour modification and exercise. In long term studies, such instruction and advice should be reinforced at frequent intervals. The effect of loss of diet compliance on weight control should be especially considered. The effect of other drugs (such as metformin) frequently prescribed in such patients should also be taken into account. The effect of smoking cessation and all changes in smoking habits on weight control should preferably be the object of special studies.

At present the optimum duration of treatment is unknown. To date all studies suggest an immediate cessation of treatment effect as soon as treatment is stopped. Long term therapy for obesity is therefore likely to be needed to show that weight loss can be achieved and maintained. Long term studies are required to demonstrate treatment associated benefits and risks and are particularly useful in documenting any changes in or loss of drug effect. Since the physiological response to dieting and reduced food intake can suggest a reduction in drug effect, it is important to remember that drug effect can be continuing despite a reduction in the rate of weight loss and may even be manifest as a failure to regain weight lost.

At present, trials documenting the effect of treatment for at least one year are required but a longer prospective study would be required by an applicant intending to demonstrate the effect of weight loss on morbidity and mortality.

Present recommendations regarding study duration are based on efficacy and safety data that relate to currently licensed products. As new drugs become available it may be necessary to modify these recommendations regarding optimum treatment duration.

5.1.1 Pharmacodynamics

Although there are no specific requirements for pharmacodynamic testing the mechanism of action of the drug should be established and discussed in relation to that of relevant drugs already available.

5.1.2 Pharmacokinetics

Pharmacokinetic studies should be performed to characterise the disposition of the drug. Physiologic changes associated with obesity and their effects on the distribution, protein binding, metabolism and renal excretion of drugs should be considered and investigated if considered relevant.
5.1.3 Interactions

Depending on the drug and its mode of action, relevant interactions (with for example antihypertensives) should be considered and investigated. Since obese patients exhibit varying degrees of glucose intolerance, the possibility of interactions with oral hypoglycaemic agents should be considered.

5.2 Initial Therapeutic Studies

Effective and safe dose regimens should be established in well defined patient samples. It should be conclusively demonstrated that weight loss is associated with appropriate loss of fat. In view of the potential for long term treatment in this condition, it is particularly important to identify the lowest dose of the drug that safely achieves its therapeutic goal.

5.3 Main Therapeutic Studies

Large clinical trials should be performed in patients with well defined obesity to demonstrate efficacy and safety with long term use. Although effective use of anorectic agents has been associated with positive effects on risk factors such as reduced blood pressure, improved lipid profiles and improved glycaemic control, studies to demonstrate effects on long term morbidity and mortality have not yet been done. It is essential that all trials should be designed to ensure that patients participating in these studies should have follow up examinations for a period deemed appropriate to allow observation of withdrawal or rebound effects and the effect of drug cessation on appetite and weight control.

The possibility of different dose regimes, such as continuous or intermittent treatment or use in combination with other anorectic agents, should be considered and explored. Additional factors to examine could include evidence of potential for drug abuse or dependence, and patterns of weight gain associated with cessation of dosing. Studies should be designed to allow the applicant to identify and characterise any clinically important sub-groups which respond to the treatment to a greater or lesser extent. If any claims are to be made with respect to such sub-groups, they should be pre-identified in the protocol.

6. SAFETY ASPECTS

Since it is likely that effective use of drugs used in weight control will require intermittent or long term use, it is important that all adverse events occurring during the course of clinical trials should be fully documented with separate analysis of adverse drug reactions, drop outs and patients who died on therapy. Adverse drug reactions should be characterised in relation to duration of treatment, dose regimen, and initial body weight or pattern of obesity.

In view of the goals of treatment of obesity, drugs used to treat it should be shown to have no deleterious effects on cardiovascular risk factors.

Special efforts should be made to assess potential adverse effects reactions (especially cardiovascular and neuro-psychiatric) that are characteristic of the class of drug being investigated. Adverse reactions characteristic of drugs acting on central catecholamine pathways reflect their sympathomimetic and stimulant properties and include reactions of early onset (agitation confusion, insomnian, nervousness, and irritability) and reactions which tend to occur during long term use (psychotic reactions). Adverse reactions
reported with drugs acting on central serotonin pathways include gastrointestinal disturbance, drowsiness, dizziness and insomnia and depression (especially during long term use).

Cases of pulmonary artery hypertension have been reported in patients who have received centrally acting anorectics. In these cases, treatment duration of greater than three months and the level of the BMI (>30) increased the risk. Although the absolute risk of pulmonary hypertension attributable to the use of these drugs is small, this association should be kept in mind in studies to determine the risk benefit ratio of long term drug treatment and increased vigilance with regard to this complication should be exercised in both drug development and post marketing studies.

Particular attention should be paid to the potential for drug abuse or dependence; withdrawal effects should be studied specifically. Where withdrawal effects are noted, therapeutic manoeuvres to reduce or minimise such effects should be investigated.